FORESIGHT SCENARIOS THEORY AND DRIVERS OF CHANGE

Event
Foresight scenarios are based on user-selected drivers of change that comprise the axes of a four-quadrant model. The characterisation of drivers, and how they are selected, lack a theoretical basis in foresight literature. VALGEN researchers address this important gap by exploring the purposes and functions of drivers in scenario development.

Significance
The normative and epistemological underpinnings of foresight methods are under-theorised, and more has been written about foresight practice than theory for two reasons. First, foresight studies arose mainly out of work done in, or associated with, the military and large corporations whose work is kept secret. Second, because foresight is tied to the practices of individuals and institutions, and is meant to change them, theoretical development has lagged behind the advancement of practice. Because driver selection is a key step in scenario development, better theoretical justification of the method of selection and criteria for drivers could yield more robust, and defensible, foresight scenarios.

Analysis
The scenario method arose from work of Herman Kahn in the 1950s and 60s and was later developed by Pierre Wack of the Royal Dutch Shell Company and popularised by Peter Schwartz in the 1970s. It is now known as the four-quadrant model or the Global Business Network (GBN) model, and is the most common scenario method. The scenario method involves brainstorming a list of factors that will drive future change, and then selecting the top two factors with the greatest level of uncertainty that promise to have the greatest impact. The two drivers are then used to create two axes, representing a spectrum of possibility with the two poles representing different extreme outcomes. Since the two axes intersect, the result is a two-by-two square, or four possible future states, each representing a different possible reality.

With respect to process of driver selection, the foresight scenario method has been criticised for its inability to adequately consider the uncertainty of the future using only two dimensions. In fact, the reasoning and justification as to why only two drivers of change are selected to form the foundation of the scenarios has been gravely overlooked in the literature. While there are suggestions that using two drivers only was made to simplify the process and make it easier for participants to understand, there appears to be no methodological basis for this decision, only a logistical one.

With respect to the drivers themselves, little has been written about the epistemological and normative underpinnings of the drivers. Selecting drivers of change with the highest level of uncertainty compels participants to explore futures at the limits of their knowledge, while drivers of change about which more is known can be integrated directly into the scenarios. This would seem to defy a criterion of verifiability associated with strategic planning, but no immediate paradox arises in foresight studies. Because risk mitigation implies anticipating and controlling for the unknown, and since foresight scenarios are conceptions of preferred futures, uncertainty is at the forefront of scenarios. Nevertheless, drivers are not well-characterised in terms of epistemic criteria including typologies of uncertainty or systems of inductive logic. Equally, the underlying norms are not well-characterised and the lack of explicit ethical theory opens scenarios to being expressions of preferences only. Also poorly understood is whether drivers need to be necessary or sufficient causes in scenario development, and whether the difference constitutes a selection criterion.

Conclusion
Foresight scenarios are powerful tools to conceive of, and plan for, desired futures amidst uncertainty. Their power is diminished, however, by under-developed theory about the underpinnings of driver selection. More robust scenarios can be created with better epistemological and normative justification of driver selection and number. Additionally, driver selection criteria partly address concerns that scenarios can be gamed by driver choice.